Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451381

RESUMO

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Assuntos
Síndrome de Behçet , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Humanos , Mutação em Linhagem Germinativa , Haploinsuficiência , Imunomodulação , Ubiquitinas , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/química , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
2.
Biomolecules ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254713

RESUMO

Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1ß, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1ß and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.


Assuntos
Citocinas , Indanos , Lipopolissacarídeos , Polifosfatos , Animais , Camundongos , Ratos , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores Imunológicos , Indanos/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Microglia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia
3.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153253

RESUMO

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Osso e Ossos/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Necroptose , Osteoartrite/terapia , Osteoblastos/metabolismo , Células-Tronco/metabolismo , Cartilagem Articular/patologia
4.
Arch Gerontol Geriatr ; 117: 105274, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995648

RESUMO

BACKGROUND: The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS: Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS: Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS: TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Humanos , Masculino , Camundongos , Ratos , Envelhecimento/fisiologia , Células Intersticiais do Testículo/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Immun Inflamm Dis ; 11(10): e970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904691

RESUMO

BACKGROUND: Endometritis seriously affects the health of women, and it is important to identify new targets for its treatment. OBJECTIVE: This study aimed to explore the role of TNFAIP3 interacting protein 2 (TNIP2) in endometritis through human endometrial epithelial cells (hEECs) stimulated by lipopolysaccharide (LPS). METHODS: hEECs were induced with LPS to build a cellular model of endometritis. Cell growth and apoptosis were detected by cell counting kit-8 and flow cytometry. The TNIP2 mRNA and protein levels were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The caspase3 activity was calculated using a Caspase3 activity kit. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were determined by enzyme-linked-immunosorbent-assay. The reactive oxygen species (ROS), lactate dehydrogenase (LDH), catalase (CAT), and superoxide dismutase (SOD) levels were determined using the corresponding kits. Nuclear factor-kappaB (NF-κB) pathway was determined by western blot assay. RESULTS: TNIP2 was downregulated in the LPS-induced endometritis cell model. Cell viability was reduced, apoptosis was enhanced, and IL-6, IL-1ß, and TNF-α levels increased in LPS-induced hEECs. Additionally, LDH activity and ROS concentration were upregulated, whereas CAT and SOD activities were downregulated in LPS-induced hEECs. These results were reversed by TNIP2 overexpression. Moreover, the results hinted that NF-κB was involved in the effects of TNIP2 on the LPS-induced endometritis cell model. CONCLUSION: TNIP2 alleviated endometritis by inhibiting the NF-κB pathway, suggesting a potential therapeutic target for endometritis.


Assuntos
Endometrite , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Endometrite/induzido quimicamente , Endometrite/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37856217

RESUMO

A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Doenças Neuroinflamatórias , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/metabolismo , Linfócitos T/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
8.
Asian Pac J Cancer Prev ; 24(7): 2485-2491, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505783

RESUMO

BACKGROUND: Activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic active B-cell receptor signaling and a constitutive activation of the NF-KB pathway. MYD88 L265P mutation occurs as a driving force of NF-KB overactivity in ABC-DLBCL. Nonetheless, in cases of DLBCL, the MYD88 L265P mutation has not yet been investigated in association with the tumour necrosis factor alpha induced protein3 (TNFAIP3) mutation. OBJECTIVE: To investigate the frequency of MYD88 and TNFAIP3 mutations in DLBCL and their association to the clinico-hematological profile. MATERIAL AND METHODS: We used real-time polymerase chain reaction in order to search for MYD88 L265P and TNFAIP3 mutations in 100 DLBCL patients. RESULTS: MYD88 L265P In 20% of cases, the CT heterozygous genotype was discovered.  CT heterozygous genotype was more common in ABC type, stage IV, greater IPI groups, extra-nodal infiltration, and BM infiltration. It was also linked to a shorter OS. TNFAIP3 mutation GA heterozygous genotype was detected in 18% of the patients, with ABC-DLBCL subtype accounting for 77.8%. The GA heterozygous genotype was usually related with stage IV, extranodal infiltration, and a reduced life expectancy. CONCLUSION: MYD88 L265P and to lesser extent TNFAIP3 mutations are major mutations in ABC- DLBCL and may be predictive factors for poor OS in ABC- DLBCL patients.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Humanos , Egito/epidemiologia , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Mutação , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Prevalência , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
9.
Arthritis Rheumatol ; 75(12): 2116-2129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37327357

RESUMO

OBJECTIVE: The aim of the study was to investigate the role of N6 -methyladenosine (m6A) modification in the progression of rheumatoid arthritis (RA). METHODS: Peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy controls were collected. The expression of m6A modification-related proteins and m6A levels were detected using polymerase chain reaction (PCR), western blot, and m6A enzyme-linked immunosorbent assay (ELISA). The roles of methyltransferase-like 14 (METTL14) in the regulation of inflammation in RA was explored using methylated RNA immunoprecipitation (MeRIP) sequencing and RNA immunoprecipitation assays. Collagen antibody-induced arthritis (CAIA) mice were used as an in vivo model to study the role of METTL14 in the inflammation progression of RA. RESULTS: We found that m6A writer METTL14 and m6A levels were decreased in PBMCs of patients with active RA and correlated negatively with the disease activity score using 28 joint counts (DAS28). Knockdown of METTL14 downregulated m6A and promoted the secretion of inflammatory cytokines interleukin 6 (IL-6) and IL-17 in PBMCs of patients with RA. Consistently, METTL14 knockdown promoted joint inflammation accompanied by upregulation of IL-6 and IL-17 in CAIA mice. MeRIP sequencing and functional studies confirmed that tumor necrosis factor α induced protein 3 (TNFAIP3), a key suppressor of the nuclear factor-κB inflammatory pathway, was involved in m6A-regulated PBMCs. Mechanistic investigations revealed that m6A affected TNFAIP3 expression by regulation of messenger RNA stability and translocation in TNFAIP3 protein coding sequence. CONCLUSIONS: Our study highlights the critical roles of m6A on regulation of inflammation in RA progression. Treatment strategies targeting m6A modification may represent a new option for management of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Artrite Experimental/metabolismo , RNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
10.
Mol Neurobiol ; 60(8): 4753-4760, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148522

RESUMO

Activated toll-like receptor (TLR) signaling has been well investigated in major depressive disorder (MDD). We previously reported that TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 play important roles in regulating the toll-like receptor 4 (TLR4) signaling pathway and may serve as novel targets in the pathogenesis of MDD. Recently, aberrant histone modification has been implicated in several psychiatric disorders, including schizophrenia and mood disorder; the most thoroughly studied modification is histone 3 lysine 4 tri-methylation (H3K4me3). In this work, we aimed to explore H3K4me3 differences in the promotors of genes encoding the abovementioned factors in patients with MDD, and whether they were altered after antidepressant treatment. A total of 30 MDD patients and 28 healthy controls were recruited. Peripheral blood mononuclear cells (PBMCs) were collected. The levels of H3K4me3 in the promoters of TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 were measured through chromatin immunoprecipitation (ChIP) followed by DNA methylation assay. Analysis of covariance was used to evaluate between-group differences after adjusting for age, sex, BMI, and smoking. In comparison with healthy controls, patients with MDD showed significantly lower H3K4me3 levels in the promoters of TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 in PBMCs. These levels were not significantly altered after completion of a 4-week antidepressant treatment. To explore the association between depression severity and H3K4me3 levels, a multiple linear regression model was generated. The results revealed that levels of H3K4me3 in the TNIP2 promoters a negative correlation with the 17-item Hamilton Depression Rating Scale (HAND-17) score, whereas that of TLR4 had a positive correlation with this score. The present results suggest that decreased H3K4me3 levels in the promoters of the genes encoding TNFAIP3, TLR4, miR-146a, miR-155, and TNIP2 are involved in psychopathology of major depressive disorder.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Humanos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Código das Histonas , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , MicroRNAs/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
11.
Front Immunol ; 14: 1166928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056760

RESUMO

Allergic airway diseases are characterized by excessive and prolonged type 2 immune responses to inhaled allergens. Nuclear factor κB (NF-κB) is a master regulator of the immune and inflammatory response, which has been implicated to play a prominent role in the pathogenesis of allergic airway diseases. The potent anti-inflammatory protein A20, termed tumor necrosis factor-α-inducible protein 3 (TNFAIP3), exerts its effects by inhibiting NF-κB signaling. The ubiquitin editing abilities of A20 have attracted much attention, resulting in its identification as a susceptibility gene in various autoimmune and inflammatory disorders. According to the results of genome-wide association studies, several TNFAIP3 gene locus nucleotide polymorphisms have been correlated to allergic airway diseases. In addition, A20 has been found to play a pivotal role in immune regulation in childhood asthma, particularly in the protection against environmentally mediated allergic diseases. The protective effects of A20 against allergy were observed in conditional A20-knockout mice in which A20 was depleted in the lung epithelial cells, dendritic cells, or mast cells. Furthermore, A20 administration significantly decreased inflammatory responses in mouse models of allergic airway diseases. Here, we review emerging findings elucidating the cellular and molecular mechanisms by which A20 regulates inflammatory signaling in allergic airway diseases, as well as discuss its potential as a therapeutic target.


Assuntos
Asma , NF-kappa B , Animais , Camundongos , Asma/tratamento farmacológico , Asma/genética , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , NF-kappa B/metabolismo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
12.
Sci Total Environ ; 878: 163069, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36996991

RESUMO

The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.


Assuntos
Cádmio , NF-kappa B , Masculino , Camundongos , Animais , Cádmio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Camundongos Endogâmicos C57BL , Hepatócitos , Inflamação/induzido quimicamente , Fígado/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia
13.
Front Immunol ; 14: 1119473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726689

RESUMO

Influenza A virus (IAV) infection leads to severe inflammation, and while epithelial-driven inflammatory responses occur via activation of NF-κB, the factors that modulate inflammation, particularly the negative regulators are less well-defined. In this study we show that A20 is a crucial molecular switch that dampens IAV-induced inflammatory responses. Chronic exposure to low-dose LPS environment can restrict this excessive inflammation. The mechanisms that this environment provides to suppress inflammation remain elusive. Here, our evidences show that chronic exposure to low-dose LPS suppressed IAV infection or LPS stimulation-induced inflammation in vitro and in vivo. Chronic low-dose LPS environment increases A20 expression, which in turn positively regulates PPAR-α and -γ, thus dampens the NF-κB signaling pathway and NLRP3 inflammasome activation. Knockout of A20 abolished the inhibitory effect on inflammation. Thus, A20 and its induced PPAR-α and -γ play a key role in suppressing excessive inflammatory responses in the chronic low-dose LPS environment.


Assuntos
Influenza Humana , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo
14.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36633909

RESUMO

Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.


Assuntos
NF-kappa B , Infiltração de Neutrófilos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Inflamação , Sepse Neonatal/genética , Sepse Neonatal/metabolismo , Infiltração de Neutrófilos/genética , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
15.
Biol Trace Elem Res ; 201(5): 2442-2457, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35871203

RESUMO

Apoptosis of kidney tubular epithelial cells contributes to diabetic kidney disease (DKD) pathophysiology, but the mechanisms are not fully understood. Zinc transporter protein member 8 (ZnT8, SLC30A8) is a susceptive gene in diabetes. Here, we aim to investigate whether ZnT8 has effects on pathophysiology of DKD. The animal groups include control, ZnT8KO mice, STZ-induced, and ZnT8-KO-STZ. STZ-induced DKD was performed in male C57BL/6 J mice and in ZnT8-KO mice. High glucose (HG)-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells) was performed in vitro. Transfection of hZnT8-EGFP or TNFAIP3 siRNA was done in NRK-52E cells. Flow cytometry with Annexin V-FITC/PI double staining and TUNEL analysis was performed for the detection of apoptosis. Gene expression at mRNA and protein levels was examined with real-time RT-PCR and Western blot. Urine albumin to creatinine ratio, proinflammatory cytokines, and apoptosis were enhanced in kidneys of STZ and ZnT8-KO-STZ mice compared to control or ZnT8-KO mice. ZnT8 overexpression after hZnT8-EGFP transfection decreased HG-stimulated inflammatory activity and apoptosis in NRK-52E cells. Furthermore, treatment with ZnSO4 blunted HG-induced apoptosis and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3). Also, ZnT8 over-expression after hZnT8-EGFP transfection significantly ameliorates HG-induced NF-κB-dependent transcriptional activity and apoptotic protein expressions in NRK-52E cells, but the inhibitory effect of ZnT8 was significantly abolished with TNFAIP3 siRNA. Our study provides evidence that ZnT8 has protective effects against apoptosis of renal tubular epithelial cells through induction of TNFAIP3 and subsequent suppression of the NF-κB pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Nefropatias Diabéticas/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Epiteliais/metabolismo , Rim/metabolismo , Túbulos Renais , Diabetes Mellitus/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia
16.
Genes Genomics ; 45(5): 657-671, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36583816

RESUMO

BACKGROUND: The pathological mechanism of intervertebral disc degeneration (IDD) is an unanswered question that we are committed to exploring. A20 is an anti-inflammatory protein of nucleus pulposus (NP) cells and plays a protective role in intervertebral disc degeneration. OBJECTIVE: This study aims to investigate the molecular mechanism by which A20 attenuates disc degeneration. METHODS: The proteins of interest were measured by immunoblotting, immunofluorescence, ELISA assay, and immunohistochemical technique to conduct related experiments. Immunofluorescence assays and mitochondrial membrane potential (JC-1) were used to assess mitophagy and mitochondrial fitness, respectively. RESULTS: Here, we demonstrated that A20 promoted mitophagy, attenuated pyroptosis, and inhibited the degradation of the extracellular matrix, consequently significantly ameliorating disc degeneration. Mechanistically, A20 reduces pyroptosis and further suppresses cellular mTOR activity. On the one hand, A20-induced mTOR inhibition triggers BNIP3-mediated mitophagy to ensure mitochondrial fitness under LPS stimulation, as a result of mitigating mitochondrial dysfunction induced by LPS. On the other hand, A20-induced mTOR inhibition reduces the loss of mitochondrial membrane potential and the generation of Mitochondrial ROS. CONCLUSION: The study revealed that A20 promotes BNIP3-mediated mitophagy by suppressing mTOR pathway activation against LPS-induced pyroptosis.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Humanos , Apoptose , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipopolissacarídeos , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas , Serina-Treonina Quinases TOR , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
17.
Apoptosis ; 28(3-4): 498-513, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587050

RESUMO

Osteoblasts are important regulators of bone formation, but their roles in ankylosing spondylitis (AS) remain unclear. This study aims to explore the role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) MEG3 in AS. Serum from AS patients as well as AS mesenchymal stem cells (ASMSCs) and healthy donors mesenchymal stem cells (HDMSCs) was collected. Accordingly, poorly expressed MEG3 and TNF alpha induced protein 3 (TNFAIP3) as well as overexpressed microRNA-125a-5p (miR-125a-5p) were noted in the serum of AS patients and in ASMSCs during the osteogenic induction process. Meanwhile, the interaction among MEG3, miR-125a-5p, and TNFAIP3 was determined and their effect on osteoblast activity was examined in vitro and in vivo. Overexpression of MEG3 and TNFAIP3 or inhibition of miR-125a-5p was found to inactivate the Wnt/ß-catenin pathway, thus suppressing osteogenic differentiation of MSCs. MEG3 competitively bound to miR-125a-5p to increase TNFAIP3 expression, thereby inactivating the Wnt/ß-catenin pathway and repressing the osteogenic differentiation of MSCs. In proteoglycan (PG)-induced AS mouse models, MEG3 also reduced osteogenic activity of MSCs to inhibit AS progression through the miR-125a-5p/TNFAIP3/Wnt/ß-catenin axis. Therefore, up-regulation of MEG3 or depletion of miR-125a-5p holds potential of alleviating AS, which sheds light on a new therapeutic strategy for AS treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Espondilite Anquilosante , Animais , Camundongos , Apoptose , beta Catenina/metabolismo , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteogênese/genética , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Via de Sinalização Wnt/genética
18.
Front Immunol ; 13: 914381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045678

RESUMO

Innate anti-inflammatory mechanisms are essential for immune homeostasis and can present opportunities to intervene inflammatory diseases. In this report, we found that YAP isoform 9 (YAP9) is an essential negative regulator of the potent inflammatory stimuli such as TNFα, IL-1ß, and LPS. YAP9 constitutively interacts with another anti-inflammatory regulator A20 (TNFAIP3) to suppress inflammatory responses, but A20 and YAP can function only in the presence of the other. YAP9 uses a short stretch of amino acids in the proline-rich domain (PRD) and transactivation domain (TAD) suppress the inflammatory signaling while A20 mainly uses the zinc finger domain 7 (ZF7). Cell-penetrating synthetic PRD, TAD, and ZF7 peptides act as YAP9 and A20 mimetics respectively to suppress the proinflammatory responses at the cellular level and in mice. Our data uncover a novel anti-inflammatory axis and anti-inflammatory agents that can be developed to treat acute or chronic conditions where TNFα, IL-1ß, or LPS plays a key role in initiating and/or perpetuating inflammation.


Assuntos
Inflamação/metabolismo , Lipopolissacarídeos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Inflamação/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Camundongos , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
19.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 229-238, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35988183

RESUMO

Mobile phones and computers have been widely used in the work of people. The incidence rate of lumbar disc herniation(LDH) has gradually increased and the trend toward younger age has been increasing. According to the epidemiological survey, about half of people will experience lumbar pain in their life and the resulting huge social and economic burden. It has important clinical significance for the treatment of lumbar disc herniation of TNFaIP3 mediated by a new nanocomposite adsorbent on tumor necrosis factor(TNF)- in rats with LDH by inhibiting the  pathway. This paper mainly studies the mechanism and efficacy of TNFaIP3 mediated by a new nanocomposite adsorbent on TNF- in rats with LDH by inhibiting the  pathway. Eight groups of human nucleus pulposus cells were randomly divided into four groups: high inhibition group, medium inhibition group, low inhibition group and no inhibition group. After interfering with human nucleus pulposus cells by inhibiting the  pathway, the cells were allowed to stand for 24 hours to extract and detect TNF-, p-p65, P50, IKB and IKK in the  signaling pathway to explore the mechanism of inhibiting  pathway on TNF- in rats with LDH. The experimental results showed that after 24 hours of intervention, compared with the non-inhibition group, the expression of TNF in the low inhibition group, medium inhibition group and high inhibition group decreased relatively, and with the increase of inhibition degree, the expression of TNF in each group decreased more obviously, such as the expression of TNF in non-inhibition group was 1.48, the expression of TNF in low inhibition group was 1.31, the expression of TNF in medium inhibition group was 0.74, and the expression of TNF in high inhibition group was 0.58. The expression of P50 was 1.86 in non-inhibition, 1.47 in low inhibition, 1.32 in medium inhibition and 1.13 in high inhibition.


Assuntos
Deslocamento do Disco Intervertebral , Nanocompostos , Animais , Humanos , Deslocamento do Disco Intervertebral/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
20.
Cell Mol Life Sci ; 79(8): 461, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913642

RESUMO

The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.


Assuntos
Infecções por Helicobacter , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Proteases Específicas de Ubiquitina , Sobrevivência Celular , Helicobacter pylori , Humanos , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...